知识大全

当前位置/ 首页/ 综合大全/知识大全/ 正文

如图四边形ABCD为平行四边形F是CD的中点连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE.((2)若$\triangle ADF$的面积为2求$▱ABCD$的面积. ","titletext":"如图四边形ABCD为平行四边形F是CD的中点连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2)若$\triangle ADF$的面积为2求$▱ABCD$的面积.)

导读 想必现在有很多小伙伴对于如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2...

想必现在有很多小伙伴对于如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2)若$\triangle ADF$的面积为2,求$▱ABCD$的面积. ","title_text":"如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2)若$\triangle ADF$的面积为2,求$▱ABCD$的面积.方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2)若$\triangle ADF$的面积为2,求$▱ABCD$的面积. ","title_text":"如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:(1)BC=CE. (2)若$\triangle ADF$的面积为2,求$▱ABCD$的面积.方面的知识分享给大家,希望大家会喜欢哦。

证明:

$left ( {1} right )$.$because $四边形$ABCD$是平行四边形

$therefore ADparallel CE$,$AD=BC$

$therefore angle D=angle ECF$

$because F$是$CD$的中点

$therefore DF=CF$

在$triangle ADF$和$triangle ECF$中

$left { {{begin{array}{ll} {angle D=angle ECF} {DF=CF} {angle AFD=angle EFC} end{array}}} right .$

$therefore triangle ADF≌triangle ECF$

$therefore AD=CE$

$because AD=BC$

$therefore BC=CE$

$left ( {2} right )$.$because $四边形$ABCD$是平行四边形

$therefore ABparallel CD$,$AB=CD$

$because F$是$CD$的中点

$therefore CF=dfrac {1} {2}CD=dfrac {1} {2}AB$

$therefore dfrac {CF} {AB}=dfrac {1} {2}$

$because ABparallel CD$

$therefore triangle ECFbacksim triangle EBA$

$therefore dfrac {{S}_{triangle ECF}} {{S}_{triangle EBA}}=left ( {dfrac {CF} {AB}} right )^{2}=left ( {dfrac {1} {2}} right )^{2}=dfrac {1} {4}$

$therefore {S}_{triangle EBA}=4{S}_{triangle ECF}$

$because triangle ADF≌triangle ECF$

$therefore {S}_{triangle ADF}={S}_{triangle ECF}=2$

$therefore {S}_{triangle EBA}=4times 2=8$

$therefore {S}_{▱ABCD}={S}_{triangle ADF}+{S}_{四边形ABCF}$

$={S}_{triangle ECF}+{S}_{四边形ABCF}$

$={S}_{triangle EBA}$

$=8$

答:$▱ABCD$的面积为$8$.

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!

免责声明:本文由用户上传,如有侵权请联系删除!