协方差cov计算公式相关系数(协方差cov计算公式)
目前是有很多朋友们对于协方差cov计算公式这个信息比较感兴趣,那么小编也是收集了一些协方差cov计算公式相关的信息来分享给大家,希望你会喜欢哦。
协方差cov计算公式=cov(x,y)=EXY-EX×EY。协方差在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差定义为
COV(X,Y)=E[(X-E(X))(Y-E(Y))]等价计算式为COV(X,Y)=E(XY)-E(X)E(Y)。例如:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02扩展资料:协方差公式推导cov(X,Y)=∑ni=1(XiX)(YiY)n=E)(YE)]cov(X,Y)=∑i=1n(XiX)(YiY)n=E)
补充
从直观上来看,协方差表示的是两个变量总体误差的期望。如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就是正值。
如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E=EE。
协方差的特点
协方差差出了一万倍,只能从两个协方差都是正数判断出两种情况下X、Y都是同向变化,但是,一点也看不出两种情况下X、Y的变化都具有相似性这一特点。
相关系数是协方差除以标准差,当X,Y的波动幅度变大的时候,协方差变大,标准差也会变大,相关系数的分母都变大,其实变化的趋势是可以抵消的,协方差的取值范围是 正无穷到负无穷,相关系数则是+1 到-1之间。
举例
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
本文到此结束,希望对大家有所帮助。